1842年奥地利一位名叫多普勒的数学家、物理学家。一天,他正路过铁路交叉处,恰逢一列火车从他身旁驰过,他发现火车从远而近时汽笛声变响,音调变尖,而火车从近而远时汽笛声变弱,音调变低。他对这个物理现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的现象,这就是频移现象。因为,声源相对于观测者在运动时,观测者所听到的声音会发生变化。当声源离观测者而去时,声波的波长增加,音调变得低沉,当声源接近观测者时,声波的波长减小,音调就变高。音调的变化同声源与观测者间的相对速度和声速的比值有关。这一比值越大,改变就越显著,后人把它称为“多普勒效应”。
火车汽笛的声调由高变低,这是因为声调的高低是由声波振动频率的不同决定的,如果频率高,声调听起来就高;反之声调听起来就低.这种现象称为多普勒效应。为了理解这一现象,就需要考察火车以恒定速度驶近时,汽笛发出的声波在传播时的规律.其结果是声波的波长缩短,好像波被压缩了.因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被拉伸了。 因此,声音听起来就显得低沉。
声波的多普勒效应也可以用于医学的诊断,也就是我们平常说的彩超。彩超简单的说就是高清晰度的黑白B超再加上彩色多普勒,首先说说超声频移诊断法,即D超,此法应用多普勒效应原理,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率有所改变,此种频率的变化称之为频移,D超包括脉冲多普勒、连续多普勒和彩色多普勒血流图像。彩色多普勒超声一般是用自相关技术进行多普勒信号处理,把自相关技术获得的血流信号经彩色编码后实时地叠加在二维图像上,即形成彩色多普勒超声血流图像。
超声多普勒法诊断心脏过程是这样的:超声振荡器产生一种高频的等幅超声信号,激励发射换能器探头,产生连续不断的超声波,向人体心血管器官发射,当超声波束遇到运动的脏器和血管时,便产生多普勒效应,反射信号就为换能器所接受,就可以根据反射波与发射的频率差异求出血流速度,根据反射波以频率是增大还是减小判定血流方向。为了使探头容易对准被测血管,通常采用一种板形双叠片探头。在临床上,多普勒效应的应用也不断增多,近年来迅速发展起超声脉冲Doppler检查仪,当声源或反射界面移动时,比如当红细胞流经心脏大血管时,从其表面散射的声音频率发生改变,由这种频率偏移可以知道血流的方向和速度,如红细胞朝向探头时,根据Doppler原理,反射的声频则提高,如红细胞离开探头时,反射的声频则降低。
红移是指物体向远离地球的方向移动时,它所发出的光波长随之增加。蓝移与红移相反,是指物体向靠近地球方向移动引起的波长减小。红移和蓝移是多普勒效应的可视版本。你也许已经亲身体会过多普勒效应的影响,最好的例子,就是当一辆正在鸣警笛的车向你驶来时,警笛的音调要远高于它经过并离开你的时候。这种音调的升高,则是与频率的增加相对应的。
多普勒效应也同样适用于光波。当一个物体向靠近我们的方向移动时,光的波长会向光谱的蓝色一端移动;当物体向远离我们的方向移动时,波长则会向红色一端移动。这种变化能够在光谱线上被观察到。
多普勒效应从19世纪下半叶起就被天文学家用来测量恒星的视向速度。现已被广泛用来佐证观测天体和人造卫星的运动。1868年,英国天文学家威廉·哈金斯就是运用这个理论,首次测出了恒星相对于地球的运动速度。在1871年,当利用太阳自转测出在太阳光谱的夫朗和斐谱线有0.1埃的红光位移时,光学红移的理论得到了证实。1901年,阿里斯塔克·别洛波尔斯基在实验室中利用一组旋转的镜子证明了光学红移。